Comparison of tolerance of four bacterial nanocellulose-producing strains to lignocellulose-derived inhibitors
نویسندگان
چکیده
BACKGROUND Through pretreatment and enzymatic saccharification lignocellulosic biomass has great potential as a low-cost feedstock for production of bacterial nanocellulose (BNC), a high value-added microbial product, but inhibitors formed during pretreatment remain challenging. In this study, the tolerance to lignocellulose-derived inhibitors of three new BNC-producing strains were compared to that of Komagataeibacter xylinus ATCC 23770. Inhibitors studied included furan aldehydes (furfural and 5-hydroxymethylfurfural) and phenolic compounds (coniferyl aldehyde and vanillin). The performance of the four strains in the presence and absence of the inhibitors was assessed using static cultures, and their capability to convert inhibitors by oxidation and reduction was analyzed. RESULTS Although two of the new strains were more sensitive than ATCC 23770 to furan aldehydes, one of the new strains showed superior resistance to both furan aldehydes and phenols, and also displayed high volumetric BNC yield (up to 14.78 ± 0.43 g/L) and high BNC yield on consumed sugar (0.59 ± 0.02 g/g). The inhibitors were oxidized and/or reduced by the strains to be less toxic. The four strains exhibited strong similarities with regard to predominant bioconversion products from the inhibitors, but displayed different capacity to convert the inhibitors, which may be related to the differences in inhibitor tolerance. CONCLUSIONS This investigation provides information on different performance of four BNC-producing strains in the presence of lignocellulose-derived inhibitors. The results will be of benefit to the selection of more suitable strains for utilization of lignocellulosics in the process of BNC-production.
منابع مشابه
Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors
BACKGROUND Lignocellulosic biomass has been investigated as a renewable non-food source for production of biofuels. A significant technical challenge to using lignocellulose is the presence of microbial growth inhibitors generated during pretreatment processes. Triacylglycerols (TAGs) are potential precursors for lipid-based biofuel production. Rhodococcus opacus MITXM-61 is an oleaginous bacte...
متن کاملDevelopment of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase.
To improve production of fuel ethanol from renewable raw materials, laccase from the white rot fungus Trametes versicolor was expressed under control of the PGK1 promoter in Saccharomyces cerevisiae to increase its resistance to phenolic inhibitors in lignocellulose hydrolysates. It was found that the laccase activity could be enhanced twofold by simultaneous overexpression of the homologous t-...
متن کاملEngineering Sugar Utilization and Microbial Tolerance toward Lignocellulose Conversion
Production of fuels and chemicals through a fermentation-based manufacturing process that uses renewable feedstock such as lignocellulosic biomass is a desirable alternative to petrochemicals. Although it is still in its infancy, synthetic biology offers great potential to overcome the challenges associated with lignocellulose conversion. In this review, we will summarize the identification and...
متن کاملTranscriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment
BACKGROUND Phenolic aldehydes generated from lignocellulose pretreatment exhibited severe toxic inhibitions on microbial growth and fermentation. Numerous tolerance studies against furfural, 5-hydroxymethyl-2-furaldehyde (HMF), acetate, and ethanol were reported, but studies on inhibition of phenolic aldehyde inhibitors are rare. For ethanologenic strains, Zymomonas mobilis ZM4 is high in ethan...
متن کاملEnhanced fermentative performance under stresses of multiple lignocellulose-derived inhibitors by overexpression of a typical 2-Cys peroxiredoxin from Kluyveromyces marxianus
BACKGROUND Bioethanol from lignocellulosic materials is of great significance to the production of renewable fuels due to its wide sources. However, multiple inhibitors generated from pretreatments represent great challenges for its industrial-scale fermentation. Despite the complex toxicity mechanisms, lignocellulose-derived inhibitors have been reported to be related to the levels of intracel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2017